Unstable Intermediates. Part 173.^{1,†} Triphenyl-phosphonium and -arsonium Cations and Various Phosphoranyl and Arsoranyl Radicals derived from Triphenylphosphine and its Oxide, Sulphide, and Selenide and Triphenylarsine and its Oxide by the Action of Ionizing Radiation

By George W. Eastland and Martyn C. R. Symons,* Department of Chemistry, The University, Leicester LE1 7RH

Exposure of solutions of triphenyl-phosphine and -arsine in sulphuric acid at 77 K to 60 Co y-rays gave the corresponding cations, characterised by their e.s.r. spectra. Triphenylphosphine oxide, sulphide, and selenide also gave Ph₃P + radicals together with species thought to be Ph₃PSH and Ph₃PSeH from the sulphide and selenide. These species are thought to have a near tetrahedral, o*, structure rather than the 'normal' trigonal bipyramidal structure. Diphenylmethyl- and phenyldimethyl-phosphine gave cations with e.s.r. parameters between the extremes for Ph₃P·+ and Me₃P·+. Triphenylarsine oxide in sulphuric acid also gave Ph₃As·+. but in methanol either Ph₃AsO⁻ or Ph₃AsOR was formed. Tetraphenylarsonium cations in methanolic solution at 77 K gave Ph₄As but no such species was obtained from tetraphenylphosphinium cations. From these results various modes of electron addition to the parent compounds are deduced and discussed.

ELECTRON spin resonance spectra for phosphoryl (•PL₂) radicals,²⁻⁴ phosphoranyl (•PL₄) radicals,⁵⁻⁷ and phosphinyl (•PL₂) radicals ⁸⁻¹⁰ are now well established, for radicals in the liquid and solid states. Similar arsenic centred radicals have also been described.¹¹⁻¹³ including •AsPh₄.¹⁴ An interesting dichotomy arises when phosphoranyl radicals having aromatic ligands are potentially formed, since, depending on the nature of the other

† The paper by D. Nelson and M. C. R. Symons (J.C.S. Perkin II, 1977, 286) designated Part 169 (in error) should be regarded as Part 170.

- ¹ Part 172, M. C. R. Symons, D. X. West, and J. G. Wilkinson, Internat. J. Radiation Phys. Chem., 1976, 8, 375. ² A. G. Davies, D. Griller, and B. P. Roberts, J. Amer. Chem.
- Soc., 1972, 94, 1782. ³ I. S. Ginns, S. P. Mishra, and M. C. R. Symons, J.C.S. Dalton, 1973, 2509.
- A. Begum, A. R. Lyons, and M. C. R. Symons, J. Chem. Soc. (A), 1971, 2290.
- ⁵ P. J. Krusic, W. Mahler, and J. K. Kochi, J. Amer. Chem. Soc., 1972, 94, 6033. ⁶ A. G. Davies, D. Griller, and B. P. Roberts, J.C.S. Perkin II, 1079, 092, 2224
- 1972, 993; 2224. ⁷ A. G. Davies, D. Griller, and B. P. Roberts, Angew. Chem. Internat. Edn., 1971, 10, 738. ⁸ B. W. Fullam, S. P. Mishra, and M. C. R. Symons, J.C.S.
- Dalton, 1974, 2145.

ligands, the excess electron may be localised primarily on phosphorus as in normal phosphoranyl radicals, or primarily on the aromatic ring as in aromatic radical anions.¹⁵⁻¹⁹ Yet another method of accommodating an excess electron is in a fairly localised σ orbital, as for radicals of the type $R_3P-PR_3^+$.^{20,21} This method of

- ⁹ M. C. R. Symons, Mol. Phys., 1972, 24, 885.
- D. G. Riller, B. P. Roberts, A. G. Davies, and K. U. Ingold, J. Amer. Chem. Soc., 1974, 96, 554.
- ¹¹ A. R. Lyons and M. C. R. Symons, J. Amer. Chem. Soc., 1973,
- **95**, 3483. ¹² E. Furimsky, J. A. Howard, and J. R. Morton, J. Amer. Chem. Soc., 1973, **95**, 6574.
- 13 A. G. Davies, D. Griller, and B. P. Roberts, J. Organometallic Chem., 1972, 38, C8.
- 14 S. A. Fieldhouse, H. C. Starkie, and M. C. R. Symons, Chem. Phys. Letters, 1973, 23, 508.
- ¹⁵ S. P. Mishra and M. C. R. Symons, *J.C.S. Dalton*, 1973, 1494.
 ¹⁶ G. Bockstein, E. H. J. Jansen, and H. M. Buck, *J.C.S.* Chem. Comm., 1974, 118.
- ¹⁷ A. G. Davies, M. J. Parrott, and B. P. Roberts, J.C.S. Chem. Comm., 1974, 973.
 - 18 S. P. Mishra and M. C. R. Symons, J.C.S. Perkin II, 1976, 21.
 - ¹⁹ M. C. R. Symons, Mol. Phys., 1975, 30, 1921. 20 A. R. Lyons and M. C. R. Symons, J.C.S. Favaday II, 1972,
- 1589.
- ²¹ T. A. Claxton, B. W. Fullam, E. Platt, and M. C. R. Symons, I.C.S. Dalton, 1975, 1395.

addition has recently been recognised for R₂P-Cl and R₂P-Br molecules, the phosphorus-halogen bond acting as the electron acceptor.22,23

Recently, e.s.r. data have been reported for the triphenylphosphonium cation, Ph₃P⁺.²⁴ The species thus identified were prepared by irradiating Ph₂P-BF₂ and Ph₃P-BCl₃ at room temperature. Our own studies of these materials ²⁵ have also revealed the formation of such radicals, but we do not consider the formulation Ph₂P^{+•} to be probable, particularly because the parameters are markedly dependent upon the B(hal)₃ group (see Table 1). The Ph₂Ge[•] radical has also been recently Triphenvlphosphine sulphide was prepared by the method of Vanderveer and Jellinek²⁹ and triphenylphosphine selenide was prepared by the method of Nicpon and Meek.30 Dimethylphenyl- and methyldiphenyl-phosphine were kindly provided by Dr. R. Kemmitt. 98% Sulphuric acid was reagent grade.

All solutions in sulphuric acid were prepared by freezing a small amount of the acid and adding the solute to the top of the frozen acid. The acid was warmed until the solute dissolved and beads of the solution were prepared immediately in liquid nitrogen.

Samples were irradiated at 77 K in a Vickrad ⁶⁰Co v-rav source for up to 4 h at a dose rate of 1.7 Mrad h^{-1} .

TABLE 1
E.s.r. Parameters for various phosphoryl and phosphoranyl radicals and related specie

		Hyperfine coupling (G) a-c		
Radical	Substrate-medium		iso	g Values ^b
Ph ₂ P·+	Ph.P-H.SO	439, 214.	289 (³¹ P)	·
	Ph,PO-H,SO	440, 220,	293 (³¹ P)	2.003, 2.007
	Ph,PS-H,SO	457, 222,	300 (³¹ P)	•
	Ph ₃ PSe−H ₃ SÕ₄	434, 219,	291 (³¹ P)	
Ph ₂ PSH	Ph ₃ PS-H ₂ SO ₄	553, 310,	391 (³¹ P)	2.000, 2.003
$Ph_{3}\dot{P}SeH$	Ph ₃ PSe−H ₃ SO ₄	568, 349,	322 (³¹ P)	2.005, 2.013
Ū		$170, \leq 30,$	(77Sé)	
Ph₂MeP·+	Ph₂MeP-H₂SO₄	504, 244,	331 (³¹ P)	2.003, 2.008
$PhMe_2P^{+}$	PhMe ₂ P-H ₂ SO ₄	524, 254,	344 (³¹ P)	2.003, 2.009
Me ₃ P· [∓]	$Me_{3}P-H_{2}SO_{4}d$	600, 290,	393 (³¹ P)	1.993, 2.012
$Ph_{s}P+$	Ph ₃ P BF ₃	499, 265,	343 (³¹ P)	2.001, 2.005
-	Ph ₃ P BCl ₃	555, 316,	396 (³¹ P)	2.002, 2.005
Ph₃As·+	$Ph_3As-H_2SO_4$ }	465. 231.	309	1.995. 2.017
D + A = + f	Ph ₃ AsO-H ₂ SO ₄	550 000	050	200 202
Et ₃ As.+)	$Et_3AS - H_2SO_4$	550, <u>280,</u>	370	2.00, 2.03
Ph ₄ As·	Ph ₄ As ⁺ Cl ⁻	592,6. 505,	534	1.97, 2.014/2.027
Me ₃ PhPOR (B)	Me ₂ PhP-CD ₃ OD	630, 390,	470	1.998, 2.012
Ph ₃ AsO-	Ph ₃ AsO-CD ₃ OD	751, 62 5,	667	1.993, 2.021
Ph ₃ AsOR •			670	
Me₃PO [−]	Me ₃ PO-CD ₃ OD	738, 548,	611	1.997, 2.015
R₃ÞBr−	$(MeO)_2 P(S)Br$	780, 600,	660	

^a 1G == 10⁴ T. ^b Estimated using the Breit-Rabi equation. ^e Errors ca. ±4 G. ^d Ref. 4. ^e Ref. 24. ^f Ref. 11. ^e Ref. 12.

reported,26 and the results compared with those for Ph₃Si.27

One aim of the present study was to prepare Ph₃P⁺⁺ and $Ph_{3}As^{+}$ by the method found to be successful for preparing trialkylphosphonium cations,⁴ namely from the protonated species in sulphuric acid [reaction (1)].

$$R_3PH^+ + \gamma \longrightarrow R_3P^{++} + (H^+) + e^- \qquad (1)$$

Another aim was to prepare electron adducts from Ph₃PO, Ph₃PS, Ph₃PSe, and Ph₃AsO molecules in the expectation that the three modes of addition mentioned above would be in active competition.

EXPERIMENTAL

Triphenylphosphine, triphenylarsine, and triphenylarsine oxide (Koch-Light) were recrystallized from ethanol and dried in vacuo. Triphenylphosphine oxide was prepared by alkaline hydrolysis of an acetone solution of dibromotriphenylphosphorane, and was recrystallized from alcohol.28

* $1G = 10^{-4} T.$

- ²² T. Berclaz, M. Geoffroy, and E. A. C. Lucken, Chem. Phys. Letters, 1975, 36, 677.
 - ²³ M. C. R. Symons, Chem. Phys. Letters, 1976, 40, 226
 - Berclaz and M. Geoffroy, Mol. Phys., 1975, 30, 549.
 J. Drake and M. C. R. Symons, unpublished results.

E.s.r. spectra were measured with a Varian E3 spectrometer at 77 K. Samples were annealed in the insert Dewar flask with continuous monitoring of the e.s.r. spectrum and cooled to 77 K whenever significant spectral changes were observed.

RESULTS AND DISCUSSION

Typical e.s.r. spectra are shown in the Figures and the derived data are summarised in Table 1. In general, $\cdot PL_3$ and $\cdot PL_4$ radicals were not obtained from the pure materials or, if they were, the spectra were poorly defined, and will not be considered herein. Solutions in sulphuric acid (98%) gave intense central lines assignable primarily to HSO_4 and $\cdot SO_3^-$ (HSO_3) radicals. Wing lines separated by *ca*. 100 G * and comprising 10 G multiplets were invariably detected which can be safely assigned to substituted cyclohexadienyl radicals, formed either by hydrogen atom addition or by electron addition

26 M. Geoffroy, L. Ginet, and E. A. C. Lucken, Chem. Phys. Letters, 1976, 38, 321.

27 M. Geoffroy and E. A. C. Lucken, Helv. Chim. Acta, 1970, 52, 813.

- 29 W. Vanderveer and F. Jellinek, Rec. Trav. chim., 1966, 85, 842.
 ³⁰ P. Nicpon and D. W. Meek, *Inorg. Synth.*, 1967, 10, 157.

²⁸ A. Michaelis and L. Gleichmann, Ber., 1882, 15, 801.

followed by protonation. Outer lines shown in Figures 1-4 are assigned to Ph_3P^{+} or Ph_3As^{+} radicals (³¹P has

FIGURE 1 First derivative X-band e.s.r. spectrum for Ph_3P in sulphuric acid at 77 K after exposure to ${}^{60}Co \gamma$ -rays, assigned to Ph_3P^{++} radicals. The spectra from Ph_3PO solutions were identical

FIGURE 2 First derivative X-band e.s.r. spectrum for Ph_3PS in sulphuric acid at 77 K after exposure to $^{60}Co \gamma$ -rays, assigned to Ph_3PSH radicals

FIGURE 3 First derivative X-band e.s.r. spectrum for Ph₃PSe in sulphuric acid at 77 K after exposure to 60 Co γ -rays, assigned to Ph₃PSeH radicals. Parallel features for radicals containing ⁷⁷Se are indicated on the high and low field sides of the main spectrum $I_{\frac{1}{2}}$, and ⁷⁵As has $I_{\frac{3}{2}}$; both are 100% abundant), together, in some cases to other radicals of the phosphoryl or phosphoranyl type (Figures 2 and 3).

Ph₃P·+ and Ph₃As·+ Radicals.—The results attributed to these species can be used to obtain approximate orbital populations using calculated hyperfine coupling constants for unit population of the appropriate atomic orbitals. $[A^{0}(^{31}P) \ 3\ 650,\ 2B^{0}(^{31}P) \ 207,\ A^{0}(^{75}As) \ 3\ 415,$ and $2B^{0}(^{75}As) \ 179 \ G$, estimated from the wavefunctions of Froese.³¹] The results, given in Table 2, are appreciably different from those previously reported,²⁴ and in

FIGURE 4 First derivative X-band e.s.r. spectrum for Ph_3As in sulphuric acid at 77 K after exposure to $^{60}Co \gamma$ -rays, assigned to Ph_3As^{+} radicals

particular, the calculated 3s character is smaller for Ph_3P^{+} . The estimation of s-character is more reliable than that of p-character, so we draw attention to the

TABLE 2 te orbital parameters for th

Approximate orbital parameters for the unpaired electron in some of the radicals listed in Table 1

Radical	$a_{s^{2}}(\%)$	$a_{p^{2}}(\%)$	λ ² α,δ
Ph ₂ P·+	8.1	72.5	9.0
Ph ₃ PSH	10.7	78.3	7.3
Ph ₃ PSeH	11.6	70.5	6.1
Ph ₂ MeP ⁺⁺	9.1	83.6	9.2
PhMe₂P·+	9.5	87.0	9.2
Me ₃ P.+	10.8	100	9.3
$Ph_3P \cdot + \circ (BF_3)$	9	75	8.3
(BCl ₃)	10	77	7.7
Ph ₃ As·+	11	97	8.8
Et ₃ As·+	10	91	9.1
Ph ₄ As	16	33	2.0
Ph ₃ ÅsO-	19.5	46	2.4
Me ₂ PhPOR (B)	12.9	77.3	6.0
Me ₃ PO-	19.0	54.0	2.85
R ₃ PBr ⁻ (σ*)	18.0	59.0	3.28
Ph ₃ Si · d	6	65	11
Ph ₃ Ge [.]	15	96	6.4
$a \lambda^2 - a^{2} a^2$	b Using A0(31P)	3 650 2 R0(31P)	207 · A0(75 A

 ${}^{a}\lambda^{2} = a_{p}{}^{2}/a_{s}{}^{2}$. b Using $A^{0}({}^{31}\text{P})$ 3 650, $2B^{0}({}^{31}\text{P})$ 207; $A^{0}({}^{75}\text{As})$ 3 415, $2B^{0}({}^{75}\text{As})$ 179 G. ${}^{\circ}$ Ref. 24. d Ref. 27. ${}^{\circ}$ Ref. 26.

variation in s-character estimated for the isostructural species Ph_3Si^{+} , Ph_3Ge^{+} , Ph_3P^{++} , and Ph_3As^{++} . We have previously shown ⁴ that for the series Me_3Al^{*-} , Me_3Si^{+} ,

³¹ Calculated from the data of C. Froese, J. Chem. Phys., 1966, 45, 1417.

and Me_3P^{*+} there is a steady fall in s-character for the unpaired electron (32, 15, and 10% respectively). The results for the germanium and arsenic derivatives fit in well with this trend, but clearly the results reported for Ph₃Si• are quite out of line. Since there were severe difficulties in the extraction of ²⁹Si data for this radical, which was trapped in gairs in crystals of Ph₃SiH, irradiated at room temperature,²⁷ we suggest that the value of *ca.* 6% 3s-character is in error. Preliminary results for Ph₃SiH irradiated at 77 K confirm this, the estimated 3s-character being *ca.* 12%.

3s-character being ca. 12%. MePh₂P⁺⁺ and Me₂PhP⁺⁺ Radicals.—Results for these radicals trapped in sulphuric acid are compared with those for Me₃P⁺⁺ and Ph₃P⁺⁺ in Figure 5. There is a

FIGURE 5 Display of the isotropic ³¹P hyperfine coupling constants for R_3P ⁺⁺ radicals. x and y are taken from ref. 24

steady decrease with increasing number of phenyl groups, possibly reflecting a small π -delocalisation onto the aromatic rings. The previous results assigned to Ph₃P⁺⁺, also included, are seen to be less satisfactory.

The fall on replacing alkyl by phenyl is opposite to that previously noted for oxy-radicals of this type.³ These radicals are more pyramidal and delocalisation into the π -system of the aromatic rings is less likely. However, such delocalisation was thought to be small even for phosphinyl radicals, when the unpaired electron on phosphorus is in a pure $3p(\pi)$ orbital ideally suited for π -overlap.⁸ The reason for these contrary trends remains obscure.

Phosphoranyl and Related Radicals.—Although Ph_3P , Ph_3As , Ph_3PO , and Ph_3AsO gave only the triphenyl cations in sulphuric acid, Ph_3PS and Ph_3PSe gave another species (A) with a greater hyperfine coupling (Figure 2). This increased coupling suggests the presence of a phosphoranyl radical, and Ph_3PSH and Ph_3PSeH are most probable. However, species (A) do not have the magnetic properties that we would expect for normal phosphoranyl radicals. Thus, A_{iso} for R_3POR radicals is always in the 620 G region.³ Replacing OR by SR causes A_{iso} to fall by *ca*. 20 G,⁸ so we predict an isotropic coupling of *ca*. 600 G for Ph_3PSH radicals, and a value of

391 G is clearly too small. Again, most phosphoranyl radicals have 3p: 3s ratios (λ^2) in the range 2—3, whilst for species $(A) \ \lambda^2 = 6$ —7. These results are, in fact, strikingly close to those for the σ^* phosphoranyl radicals recently described ²³ (see Table 1), and hence we tentatively postulate structures in which the excess electron is largely in the P-S or P-Se σ^* orbital.

In an attempt to shed more light on this suggestion we have examined the spectra assigned to Ph₃PSeH for satellite lines from radicals containing ⁷⁷Se (Figure 3). (⁷⁷Se has $I \frac{1}{2}$ and is 7.6% abundant.) Clear parallel type features are apparent on the high and low field sides of the main $\pm \frac{1}{2}$ transitions which give $A_{\parallel}(^{77}Se) = 170$ G. However, we were unable to detect any satellites to the main perpendicular features, which means that $A_{\perp}(^{77}Se)$ for this direction is ≤ 30 G.

These values, although too imprecise to warrant derivation of orbital populations are nevertheless quite reasonable for the σ^* structure. They establish that the parallel ⁷⁷Se coupling has a similar direction to that for ³¹P. This would be impossible for the normal phosphoranyl structure, ³² but is required for the σ^* structure, ^{22, 23} which therefore receives strong support.

When these solutions were annealed, the $Ph_3P^{\cdot+}$ radicals were lost prior to the σ^* phosphoranyl radicals. There was no sign of conversion of these to $Ph_3P^{\cdot+}$ or to normal phosphoranyl radicals prior to complete loss.

Solutions in Methanol.—In many cases the solubility was too low and the resulting e.s.r. spectra were untrustworthy (there is a danger with sparingly soluble substrates that more soluble impurities are preferentially extracted.) However, good, reproducible results were obtained from Me₂PhP and Ph₃AsO solutions and we consider that these are worthy of discussion.

FIGURE 6 First derivative X-band e.s.r. spectrum for Me₂PhP in CD₃OD at 77 K, after exposure to ⁶⁰Co γ -rays, showing features tentatively assigned to Me₂PhPOR σ^* radicals (B)

Irradiation of methanolic solutions of Me₂PhP gave some dimer cation, Me₂PhP-PMe₂Ph⁺, which was formed in high yield in the pure material, together with a ³² D. J. Nelson and M. C. R. Symons, J.C.S. Dalton, 1975, 1164. species (B) having A_{\parallel} 630, A_{\perp} 390 G and g values ca. 2.00. Some MePhP radicals were also detected (Figure 6). Although direct electron addition to the benzene rings is expected, nevertheless the anion Me₂PhP^{.-} with the electron on phosphorus is a possible candidate for centre (B). Unfortunately ·PL3⁻ centres are not well established, and so we are unable to argue by analogy. However, we confidently expect that A_{iso} (31P) should be appreciably less for $\cdot PR_3^-$ than for $\cdot PR_4$ radicals, A_{iso} for •PH₄ is 519.3 G,³³ and replacing H by alkyl is expected to reduce this value.³ Thus an isotropic coupling of 470 G is reasonable for Me₂PhP⁻⁻ anions. Nevertheless, we consider this to be unlikely since even if electron addition to phosphorus were to compete with ring addition, we would expect ready protonation to give Me₂PhPH or Me,PhPD, just as occurs to the ring to give cyclohexadienyl radicals. Since methanolic solutions gave no ¹H hyperfine coupling this seems unlikely.

Another possibility, which we favour, is the σ^* phosphoranyl structure assigned to Ph₃PSH and Ph₃PSeH. The e.s.r. data are quite comparable (Table 1), but we stress that Ph₃POH⁺ in sulphuric acid failed to give such a species. Possibly reaction (2) is the first step in this

$$Me_2PhP + RO \rightarrow Me_2PhP \cdots OR (\sigma^*)$$
 (2)

addition process. There was no sign of any change to the 'normal' phosphoranyl radical structure on annealing, although radical (B) was rapidly lost at temperatures close to 77 K. We conclude, if reaction (2) is correct, that electron migration onto the ring to give the thermodynamically favoured aromatic anion occurs rapidly. In the liquid phase the first detectable product between PhPL₂ molecules and alkoxyl radicals is the aromatic anion.^{16,17} However, in the particular case of PhP(OMe)₂, one of us ¹⁹ has presented evidence that at 77 K RO addition proceeds via the phosphoranyl radical $Ph\dot{P}(OMe)_{2}(OR)$, which probably has the 'normal' structure. We conclude that the energetic balance between the formation of PhL₂POR σ^* radicals, normal PhL₂POR phosphoranyl radicals, and PhL₂POR anions is subtle and that the mechanistic route to the most stable form can vary with substrate and temperature.

Methanolic solutions of Ph₃AsO gave spectra that can be interpreted with greater certainty (Figure 7). The resulting data are close to expectation for Ph₃AsO⁻ or Ph₃ÅsOR with the normal phosphoranyl configuration. A_{iso} is close to that for Ph₃ÅsOCMe₃ studied by Furinsky *et al.* in the liquid phase,¹² and $\lambda^2 = 2.4$, which is in the region expected for such radicals. We suggest that electron addition occurs on arsenic in preference to the benzene rings, as is the case for Ph₄As⁺. These results point to a considerably greater electron affinity for arsenic than for phosphorus in these compounds, together possibly with a smaller resistance to the bending distortion required to form the stable configuration of these anions. If this is correct, electron addition is

³³ A. J. Colussi, J. R. Morton, and K. F. Preston, J. Chem. Phys., 1975, **62**, 2004. probably followed by protonation. Replacing CD_3OD by CH_3OH resulted in a marked increase in line-width, but no extra hyperfine splitting. This result is similar to that recently noted for AsF_6^- and PF_6^- ions.³⁴ Both react with electrons to give AsF_5^- and PF_5^- respectively, but when the former is present as a dilute impurity in KPF_6 , AsF_5^- ions are formed in preference to PF_5^- , showing the greater effective electron affinity for arsenic.³⁴

Aspects of Mechanism.—The triphenyl radical cations are formed by electron loss followed by proton loss for

FIGURE 7 First derivative X-band e.s.r. spectrum for Ph_3AsO in CD_3OD , at 77 K, after exposure to $^{60}Co \gamma$ -rays, showing features assigned to Ph_3AsO^- or Ph_3AsOD radicals

 Ph_3PH^+ and Ph_3AsH^+ , but presumably by electron gain for Ph_3POH^+ and Ph_3AsOH^+ [reaction (3)]. Probably

$$Ph_3POH^+ + e^- + H_2SO_4 \longrightarrow Ph_3P^{++} + H_2O + HSO_4^-$$
 (3)

electron addition to the phenyl groups also occurs since cyclohexadienyl radicals are formed, but there is no trace of the parent phosphoranyl radicals. Since these are formed in their σ^* form from the sulphide and selenide derivatives, we suggest that bond stretching is favoured over bond bending due to the presence of a low-lying σ^* orbital in all these cases. Perhaps the σ^* Ph₃P-OH radical is an intermediate in process (3), and subsequent protonation gives Ph₃P^{·+} + H₂O. The low basicity of sulphur and selenium would then explain why H₂S and H₂Se are less readily lost from the sulphur and selenium derivatives. The fact that Ph₃P^{·+} is not formed from Ph₃PO in methanol, electron capture being entirely on

³⁴ M. C. R. Symons, Internat. J. Radiation Phys. Chem., 1976, 8, 643. the aromatic rings, shows how subtle these effects must be. Thus Ph_3PO adds to the ring only, but Ph_3AsO adds to arsenic to give a normal phosphoranyl radical. Ph_3POH^+ adds in part to phosphorus, but sulphuric acid causes dissociative electron capture. Ph_3PSH^+ and Ph_3PSeH^+ again add to phosphorus, but now the σ^* structure is the most stable.

Other Radicals.—Me₂PhP and MePh₂P gave good e.s.r. signals for the dimer cations ²⁰ on irradiation at 77 K (cf. Figure 6). The data were similar to those previously reported for $R_3P-PR_3^+$ species (R = alkyl) but, as with

the monomer cations themselves, replacing alkyl by phenyl caused a slight fall in A_{iso} (³¹P).

In several cases evidence for phosphinyl and arsinyl radicals was obtained.^{8,11} These are characterised by well defined parallel features separated by 250—300 G, but generally their perpendicular features were hidden by more intense central lines from other radicals.

G. W. E. thanks the Saginaw Valley State College for leave of absence, and the S.R.C. for a grant.

[6/1233 Received, 25th June, 1976]